3.39 \(\int \frac{a+b x^2}{\left (c+d x^2\right )^{3/2} \sqrt{e+f x^2}} \, dx\)

Optimal. Leaf size=209 \[ \frac{\sqrt{e} \sqrt{c+d x^2} (b e-a f) F\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{c \sqrt{f} \sqrt{e+f x^2} (d e-c f) \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}-\frac{\sqrt{e+f x^2} (b c-a d) E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{c f}{d e}\right )}{\sqrt{c} \sqrt{d} \sqrt{c+d x^2} (d e-c f) \sqrt{\frac{c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}} \]

[Out]

-(((b*c - a*d)*Sqrt[e + f*x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (c*f)/
(d*e)])/(Sqrt[c]*Sqrt[d]*(d*e - c*f)*Sqrt[c + d*x^2]*Sqrt[(c*(e + f*x^2))/(e*(c
+ d*x^2))])) + (Sqrt[e]*(b*e - a*f)*Sqrt[c + d*x^2]*EllipticF[ArcTan[(Sqrt[f]*x)
/Sqrt[e]], 1 - (d*e)/(c*f)])/(c*Sqrt[f]*(d*e - c*f)*Sqrt[(e*(c + d*x^2))/(c*(e +
 f*x^2))]*Sqrt[e + f*x^2])

_______________________________________________________________________________________

Rubi [A]  time = 0.31425, antiderivative size = 209, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.1 \[ \frac{\sqrt{e} \sqrt{c+d x^2} (b e-a f) F\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{c \sqrt{f} \sqrt{e+f x^2} (d e-c f) \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}-\frac{\sqrt{e+f x^2} (b c-a d) E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{c f}{d e}\right )}{\sqrt{c} \sqrt{d} \sqrt{c+d x^2} (d e-c f) \sqrt{\frac{c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}} \]

Antiderivative was successfully verified.

[In]  Int[(a + b*x^2)/((c + d*x^2)^(3/2)*Sqrt[e + f*x^2]),x]

[Out]

-(((b*c - a*d)*Sqrt[e + f*x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (c*f)/
(d*e)])/(Sqrt[c]*Sqrt[d]*(d*e - c*f)*Sqrt[c + d*x^2]*Sqrt[(c*(e + f*x^2))/(e*(c
+ d*x^2))])) + (Sqrt[e]*(b*e - a*f)*Sqrt[c + d*x^2]*EllipticF[ArcTan[(Sqrt[f]*x)
/Sqrt[e]], 1 - (d*e)/(c*f)])/(c*Sqrt[f]*(d*e - c*f)*Sqrt[(e*(c + d*x^2))/(c*(e +
 f*x^2))]*Sqrt[e + f*x^2])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 35.3221, size = 173, normalized size = 0.83 \[ \frac{\sqrt{e} \sqrt{c + d x^{2}} \left (a f - b e\right ) F\left (\operatorname{atan}{\left (\frac{\sqrt{f} x}{\sqrt{e}} \right )}\middle | 1 - \frac{d e}{c f}\right )}{c \sqrt{f} \sqrt{\frac{e \left (c + d x^{2}\right )}{c \left (e + f x^{2}\right )}} \sqrt{e + f x^{2}} \left (c f - d e\right )} - \frac{\sqrt{e + f x^{2}} \left (a d - b c\right ) E\left (\operatorname{atan}{\left (\frac{\sqrt{d} x}{\sqrt{c}} \right )}\middle | - \frac{c f}{d e} + 1\right )}{\sqrt{c} \sqrt{d} \sqrt{\frac{c \left (e + f x^{2}\right )}{e \left (c + d x^{2}\right )}} \sqrt{c + d x^{2}} \left (c f - d e\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((b*x**2+a)/(d*x**2+c)**(3/2)/(f*x**2+e)**(1/2),x)

[Out]

sqrt(e)*sqrt(c + d*x**2)*(a*f - b*e)*elliptic_f(atan(sqrt(f)*x/sqrt(e)), 1 - d*e
/(c*f))/(c*sqrt(f)*sqrt(e*(c + d*x**2)/(c*(e + f*x**2)))*sqrt(e + f*x**2)*(c*f -
 d*e)) - sqrt(e + f*x**2)*(a*d - b*c)*elliptic_e(atan(sqrt(d)*x/sqrt(c)), -c*f/(
d*e) + 1)/(sqrt(c)*sqrt(d)*sqrt(c*(e + f*x**2)/(e*(c + d*x**2)))*sqrt(c + d*x**2
)*(c*f - d*e))

_______________________________________________________________________________________

Mathematica [C]  time = 1.04871, size = 206, normalized size = 0.99 \[ \frac{\sqrt{\frac{d}{c}} \left (x \sqrt{\frac{d}{c}} \left (e+f x^2\right ) (b c-a d)+i e \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} (b c-a d) E\left (i \sinh ^{-1}\left (\sqrt{\frac{d}{c}} x\right )|\frac{c f}{d e}\right )-i a \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} (c f-d e) F\left (i \sinh ^{-1}\left (\sqrt{\frac{d}{c}} x\right )|\frac{c f}{d e}\right )\right )}{d \sqrt{c+d x^2} \sqrt{e+f x^2} (c f-d e)} \]

Antiderivative was successfully verified.

[In]  Integrate[(a + b*x^2)/((c + d*x^2)^(3/2)*Sqrt[e + f*x^2]),x]

[Out]

(Sqrt[d/c]*(Sqrt[d/c]*(b*c - a*d)*x*(e + f*x^2) + I*(b*c - a*d)*e*Sqrt[1 + (d*x^
2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticE[I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)] - I*a*(
-(d*e) + c*f)*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticF[I*ArcSinh[Sqrt[d
/c]*x], (c*f)/(d*e)]))/(d*(-(d*e) + c*f)*Sqrt[c + d*x^2]*Sqrt[e + f*x^2])

_______________________________________________________________________________________

Maple [A]  time = 0.04, size = 334, normalized size = 1.6 \[{\frac{1}{c \left ( cf-de \right ) \left ( df{x}^{4}+cf{x}^{2}+de{x}^{2}+ce \right ) } \left ( -{x}^{3}adf\sqrt{-{\frac{d}{c}}}+{x}^{3}bcf\sqrt{-{\frac{d}{c}}}+{\it EllipticF} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) acf\sqrt{{\frac{f{x}^{2}+e}{e}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}-{\it EllipticF} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) ade\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}+{\it EllipticE} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) ade\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}-{\it EllipticE} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) bce\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}-xade\sqrt{-{\frac{d}{c}}}+xbce\sqrt{-{\frac{d}{c}}} \right ) \sqrt{f{x}^{2}+e}\sqrt{d{x}^{2}+c}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((b*x^2+a)/(d*x^2+c)^(3/2)/(f*x^2+e)^(1/2),x)

[Out]

(-x^3*a*d*f*(-d/c)^(1/2)+x^3*b*c*f*(-d/c)^(1/2)+EllipticF(x*(-d/c)^(1/2),(c*f/d/
e)^(1/2))*a*c*f*((f*x^2+e)/e)^(1/2)*((d*x^2+c)/c)^(1/2)-EllipticF(x*(-d/c)^(1/2)
,(c*f/d/e)^(1/2))*a*d*e*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)+EllipticE(x*(-d/
c)^(1/2),(c*f/d/e)^(1/2))*a*d*e*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)-Elliptic
E(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*b*c*e*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)-
x*a*d*e*(-d/c)^(1/2)+x*b*c*e*(-d/c)^(1/2))*(f*x^2+e)^(1/2)*(d*x^2+c)^(1/2)/(-d/c
)^(1/2)/c/(c*f-d*e)/(d*f*x^4+c*f*x^2+d*e*x^2+c*e)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{b x^{2} + a}{{\left (d x^{2} + c\right )}^{\frac{3}{2}} \sqrt{f x^{2} + e}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^2 + a)/((d*x^2 + c)^(3/2)*sqrt(f*x^2 + e)),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)/((d*x^2 + c)^(3/2)*sqrt(f*x^2 + e)), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{b x^{2} + a}{{\left (d x^{2} + c\right )}^{\frac{3}{2}} \sqrt{f x^{2} + e}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^2 + a)/((d*x^2 + c)^(3/2)*sqrt(f*x^2 + e)),x, algorithm="fricas")

[Out]

integral((b*x^2 + a)/((d*x^2 + c)^(3/2)*sqrt(f*x^2 + e)), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{a + b x^{2}}{\left (c + d x^{2}\right )^{\frac{3}{2}} \sqrt{e + f x^{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x**2+a)/(d*x**2+c)**(3/2)/(f*x**2+e)**(1/2),x)

[Out]

Integral((a + b*x**2)/((c + d*x**2)**(3/2)*sqrt(e + f*x**2)), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{b x^{2} + a}{{\left (d x^{2} + c\right )}^{\frac{3}{2}} \sqrt{f x^{2} + e}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^2 + a)/((d*x^2 + c)^(3/2)*sqrt(f*x^2 + e)),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)/((d*x^2 + c)^(3/2)*sqrt(f*x^2 + e)), x)